Scalable Vertiport Hub Location Selection for Air Taxi Operations in a Metropolitan Region

Author:

Chen Liting1,Wandelt Sebastian1ORCID,Dai Weibin1,Sun Xiaoqian1ORCID

Affiliation:

1. School of Electronic and Information Engineering, Beihang University, 100191 Beijing, China

Abstract

On-demand air mobility services, often called air taxis, are on the way to revolutionize our urban/regional transportation sector by lifting transportation to the third dimension and thus possibly contribute to solving the congestion-induced transportation deadlock many metropolitan regions face today. Although existing research mainly focuses on the design of efficient vehicles and specifically battery technology, in the near future, a new question will arise: Where to locate the vertiports/landing pads for such air taxis? In this study, we propose a vertiport location selection problem. In contrast to existing studies, we allow the demand to be distributed over the whole metropolitan area, modeled as a grid, and exclude certain grid cells from becoming hubs, for example, because of safety/geographical constraints. The combination of these two contributions makes the problem intriguingly difficult to solve with standard solution techniques. We propose a novel variable neighborhood search heuristic, which is able to solve 12 × 12 grid instances within a few seconds of computation time and zero gaps in our experiments, whereas CPLEX needs up to 10 hours. We believe that our study contributes toward the scalable selection of vertiport locations for air taxis. Summary of Contribution: The increasing interest in opening the third dimension, that is, altitude, to transportation inside metropolitan regions raises new research challenges. Existing research mainly focuses on the design of efficient vehicles and control problems. In the near future, however, the actual operation of air taxis will lead to new set of operations research problems for so-called air taxi operations. Our contribution focuses on the optimization of vertiports for air taxi operations in a metropolitan region. We choose to model the problem over a grid-like demand structure, with a novel side constraint: selected grid cells are unavailable as hubs, for example, because of environmental, technical, cultural, or other reasons. This makes our model a special case in between the two traditional models: discrete location and continuous location. Our model is inherently difficult to solve for exact methods; for instance, solving a grid of 12 × 12 grid cells needs more than 10 hours with CPLEX, when modeled as a discrete location problem. We show that a straightforward application of existing neighborhood search heuristics is not suitable to solve this problem well. Therefore, we design an own variant of mixed variable neighborhood search, which consists of novel local search steps, tailored toward our grid structure. Our evaluation shows that by using our novel heuristic, almost all instances can be solved toward optimality.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3