Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms

Author:

Song Guopeng1ORCID,Leus Roel2ORCID

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, 410073 Changsha, China;

2. Research Centre for Operations Research and Statistics (ORSTAT), Faculty of Economics and Business, KU Leuven, 3000 Leuven, Belgium

Abstract

We study parallel machine scheduling for makespan minimization with uncertain job processing times. To incorporate uncertainty and generate solutions that are, in some way, insensitive to unfolding information, three different modeling paradigms are adopted: a robust model, a chance-constrained model, and a distributionally robust chance-constrained model. We focus on devising generic solution methods that can efficiently handle these different models. We develop two general solution procedures: a cutting-plane method that leverages the submodularity in the models and a customized dichotomic search procedure with a decision version of a bin packing variant under uncertainty solved in each iteration. A branch-and-price algorithm is designed to solve the bin packing problems. The efficiency of our methods is shown through extensive computational tests. We compare the solutions from the different models and report the general lessons learned regarding the choice between different frameworks for planning under uncertainty. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101264 and 71801218] and the Science and Technology Innovation Team in Higher Educational Institutions of Hunan Province [Grant 2020RC4046]. Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1229 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3