Radius of Robust Feasibility for Mixed-Integer Problems

Author:

Liers Frauke12,Schewe Lars3ORCID,Thürauf Johannes12ORCID

Affiliation:

1. Discrete Optimization, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;

2. Energie Campus Nürnberg, 90429 Nürnberg, Germany;

3. School of Mathematics, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

Abstract

For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal size of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs and to include safe variables and constraints; that is, where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs and of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. Summary of Contribution: Robust optimization is an important field of operations research due to its capability of protecting optimization problems from data uncertainties that are usually defined via so-called uncertainty sets. Intensive research has been conducted in developing algorithmically tractable reformulations of the usually semi-infinite robust optimization problems. However, in applications it also important to construct appropriate uncertainty sets (i.e., prohibiting too conservative, intractable, or even infeasible robust optimization problems due to the choice of the uncertainty set). In doing so, it is useful to know the maximal “size” of a given uncertainty set such that a robust feasible solution still exists. In this paper, we study one notion of “size”: the radius of robust feasibility (RRF). We contribute on the theoretical side by generalizing the RRF to MIPs as well as to include “safe” variables and constraints (i.e., where uncertainties do not affect certain variables or constraints). This allows to apply the RRF to many applications since safe variables and constraints exist in most applications. We also provide first methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust bilevel optimization for near-optimal lower-level solutions;Journal of Global Optimization;2024-07-30

2. A unified approach to inverse robust optimization problems;Mathematical Methods of Operations Research;2024-02-22

3. A Radius of Robust Feasibility for Uncertain Farthest Voronoi Cells;Set-Valued and Variational Analysis;2023-03

4. Deciding the feasibility of a booking in the European gas market is coNP-hard;Annals of Operations Research;2022-06-30

5. The radius of robust feasibility of uncertain mathematical programs: A Survey and recent developments;European Journal of Operational Research;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3