Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design

Author:

Liu Junming1ORCID,Chen Weiwei2ORCID,Yang Jingyuan3ORCID,Xiong Hui2ORCID,Chen Can2

Affiliation:

1. Department of Information Systems, City University of Hong Kong, Hong Kong, China;

2. Management Science and Information System, Rutgers University, Newark, New Jersey 07102

3. Information Systems and Operations Management, George Mason University, Fairfax, Virginia 22030;

Abstract

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on unsupervised learning algorithms and applications in supply chain management;International Journal of Production Research;2024-08-19

2. Integration of prediction and optimization for smart stock portfolio selection;European Journal of Operational Research;2024-08

3. Travel bubble policies for low‐risk air transport recovery during pandemics;Risk Analysis;2024-06-24

4. Optimization of Logistics Distribution Center Based on Data Mining;2024 IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB);2024-04-19

5. Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective;Annals of Operations Research;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3