Decision Diagram-Based Branch-and-Bound with Caching for Dominance and Suboptimality Detection

Author:

Coppé Vianney1ORCID,Gillard Xavier1ORCID,Schaus Pierre1ORCID

Affiliation:

1. UCLouvain, 1348 Louvain-la-Neuve, Belgium

Abstract

The branch-and-bound algorithm based on decision diagrams is a framework for solving discrete optimization problems with a dynamic programming formulation. It works by compiling a series of bounded-width decision diagrams that can provide lower and upper bounds for any given subproblem. Eventually, every part of the search space will be either explored or pruned by the algorithm, thus proving optimality. This paper presents new ingredients to speed up the search by exploiting the structure of dynamic programming models. The key idea is to prevent the repeated expansion of nodes corresponding to the same dynamic programming states by querying expansion thresholds cached throughout the search. These thresholds are based on dominance relations between partial solutions previously found and on pruning inequalities given by rough upper bounds and local bounds — two additional filtering techniques recently introduced. Computational experiments show that the pruning brought by this caching mechanism allows for significantly reducing the number of nodes expanded by the algorithm. This results in more benchmark instances of difficult optimization problems being solved in less time while using narrower decision diagrams. History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms–Discrete. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0340 ), as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0340 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3