Combined Global and Local Search for Optimization with Gaussian Process Models

Author:

Meng Qun1,Wang Songhao2ORCID,Ng Szu Hui1ORCID

Affiliation:

1. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 117576, Singapore;

2. Department of Information Systems and Management Engineering, Southern University of Science and Technology, Shenzhen 518000, China *Corresponding author

Abstract

Gaussian process (GP) model based optimization is widely applied in simulation and machine learning. In general, it first estimates a GP model based on a few observations from the true response and then uses this model to guide the search, aiming to quickly locate the global optimum. Despite its successful applications, it has several limitations that may hinder its broader use. First, building an accurate GP model can be difficult and computationally expensive, especially when the response function is multimodal or varies significantly over the design space. Second, even with an appropriate model, the search process can be trapped in suboptimal regions before moving to the global optimum because of the excessive effort spent around the current best solution. In this work, we adopt the additive global and local GP (AGLGP) model in the optimization framework. The model is rooted in the inducing points based GP sparse approximations and is combined with independent local models in different regions. With these properties, the AGLGP model is suitable for multimodal responses with relatively large data sizes. Based on this AGLGP model, we propose a combined global and local search for optimization (CGLO) algorithm. It first divides the whole design space into disjoint local regions and identifies a promising region with the global model. Next, a local model in the selected region is fit to guide detailed search within this region. The algorithm then switches back to the global step when a good local solution is found. The global and local natures of CGLO enable it to enjoy the benefits of both global and local search to efficiently locate the global optimum. Summary of Contribution: This work proposes a new Gaussian process based algorithm for stochastic simulation optimization, which is an important area in operations research. This type of algorithm is also regarded as one of the state-of-the-art optimization algorithms for black-box functions in computer science. The aim of this work is to provide a computationally efficient optimization algorithm when the baseline functions are highly nonstationary (the function values change dramatically across the design space). Such nonstationary surfaces are very common in reality, such as the case in the maritime traffic safety problem considered here. In this problem, agent-based simulation is used to simulate the probability of collision of one vessel with the others on a given trajectory, and the decision maker needs to choose the trajectory with the minimum probability of collision quickly. Typically, in a high-congestion region, a small turn of the vessel can result in a very different conflict environment, and thus the response is highly nonstationary. Through our study, we find that the proposed algorithm can provide safer choices within a limited time compared with other methods. We believe the proposed algorithm is very computationally efficient and has large potential in such operational problems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3