Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions

Author:

Ansari Mehdi1ORCID,Borrero Juan S.1ORCID,Lozano Leonardo2ORCID

Affiliation:

1. School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078;

2. Operations, Business Analytics & Information Systems, University of Cincinnati, Cincinnati, Ohio 45221

Abstract

We study a class of adversarial minimum-cost flow problems where the arcs are subject to multiple ripple effect disruptions that increase their usage cost. The locations of the disruptions’ epicenters are uncertain, and the decision maker seeks a flow that minimizes cost assuming the worst-case realization of the disruptions. We evaluate the damage to each arc using a linear model, where the damage is the cumulative damage of all disruptions affecting the arc; and a maximum model, where the damage is given by the most destructive disruption affecting the arc. For both models, the arcs’ costs after disruptions are represented with a mixed-integer feasible region, resulting in a robust optimization problem with a mixed-integer uncertainty set. The main challenge to solve the problem comes from a subproblem that evaluates the worst-case cost for a given flow plan. We show that for the linear model the uncertainty set can be decomposed into a series of single disruption problems, which leads to a polynomial time algorithm for the subproblem. The uncertainty set of the maximum model, however, cannot be decomposed, and we show that the subproblem under this model is NP-hard. For this case, we further present a big-M free binary reformulation of the uncertainty set based on conflict constraints that results in a significantly smaller formulation with tighter linear programming relaxations. We extend the models by considering a less conservative approach where only a subset of the disruptions can occur and show that the properties of the linear and maximum models also hold in this case. We test our proposed approaches over real road networks and synthetics instances and show that our methods achieve orders of magnitude improvements over a standard approach from the literature. History: Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0236] and the Office of Naval Research [Grant N00014-19-1-2329]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1243 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3