Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application

Author:

Lima Ricardo M.1ORCID,Conejo Antonio J.2ORCID,Giraldi Loïc3ORCID,Le Maître Olivier4ORCID,Hoteit Ibrahim5ORCID,Knio Omar M.1ORCID

Affiliation:

1. Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;

2. Department of Integrated Systems Engineering, and Department of Electrical and Computer Engineering, The Ohio State University, Ohio 43210;

3. Commissariat à l’Énergie Atomique et aux Énergies Alternatives (French Alternative Energies and Atomic Energy Commission), Direction des Énergies (Energy division), Institut de REcherche sur les Systèmes Nucléaires pour la production d’Énergie bas carbone (Research Institute for Nuclear Systems for Low Carbon Energy Production), Département d’Études des Combustibles (Fuel department), Cadarache F-13108 Saint-Paul-Lez-Durance, France;

4. Centre de Mathématiques Appliquées, Centre National de la Recherche Scientifique, Inria, Ecole Polytechnique, Palaiseau 91128, France;

5. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract

This paper compares risk-averse optimization methods to address the self-scheduling and market involvement of a virtual power plant (VPP). The decision-making problem of the VPP involves uncertainty in the wind speed and electricity price forecast. We focus on two methods: risk-averse two-stage stochastic programming (SP) and two-stage adaptive robust optimization (ARO). We investigate both methods concerning formulations, uncertainty and risk, decomposition algorithms, and their computational performance. To quantify the risk in SP, we use the conditional value at risk (CVaR) because it can resemble a worst-case measure, which naturally links to ARO. We use two efficient implementations of the decomposition algorithms for SP and ARO; we assess (1) the operational results regarding first-stage decision variables, estimate of expected profit, and estimate of the CVaR of the profit and (2) their performance taking into consideration different sample sizes and risk management parameters. The results show that similar first-stage solutions are obtained depending on the risk parameterizations used in each formulation. Computationally, we identified three cases: (1) SP with a sample of 500 elements is competitive with ARO; (2) SP performance degrades comparing to the first case and ARO fails to converge in four out of five risk parameters; (3) SP fails to converge, whereas ARO converges in three out of five risk parameters. Overall, these performance cases depend on the combined effect of deterministic and uncertain data and risk parameters. Summary of Contribution: The work presented in this manuscript is at the intersection of operations research and computer science, which are intrinsically related with the scope and mission of IJOC. From the operations research perspective, two methodologies for optimization under uncertainty are studied: risk-averse stochastic programming and adaptive robust optimization. These methodologies are illustrated using an energy scheduling problem. The study includes a comparison from the point of view of uncertainty modeling, formulations, decomposition methods, and analysis of solutions. From the computer science perspective, a careful implementation of decomposition methods using parallelization techniques and a sample average approximation methodology was done . A detailed comparison of the computational performance of both methods is performed. Finally, the conclusions allow establishing links between two alternative methodologies in operations research: stochastic programming and robust optimization.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3