Supervised ML for Solving the GI/GI/1 Queue

Author:

Baron Opher1ORCID,Krass Dmitry1ORCID,Senderovich Arik2ORCID,Sherzer Eliran1ORCID

Affiliation:

1. Rotman School Of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada;

2. School of Information Technologies (ITEC), York University, Toronto, Ontario M3J 1P3, Canada

Abstract

We apply supervised learning to a general problem in queueing theory: using a neural net, we develop a fast and accurate predictor of the stationary system-length distribution of a GI/GI/1 queue—a fundamental queueing model for which no analytical solutions are available. To this end, we must overcome three main challenges: (i) generating a large library of training instances that cover a wide range of arbitrary interarrival and service time distributions, (ii) labeling the training instances, and (iii) providing continuous arrival and service distributions as inputs to the neural net. To overcome (i), we develop an algorithm to sample phase-type interarrival and service time distributions with complex transition structures. We demonstrate that our distribution-generating algorithm indeed covers a wide range of possible positive-valued distributions. For (ii), we label our training instances via quasi-birth-and-death(QBD) that was used to approximate PH/PH/1 (with phase-type arrival and service process) as labels for the training data. For (iii), we find that using only the first five moments of both the interarrival and service times distribution as inputs is sufficient to train the neural net. Our empirical results show that our neural model can estimate the stationary behavior of the GI/GI/1—far exceeding other available methods in terms of both accuracy and runtimes. History: Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: O. Baron received financial support from the Natural Sciences and Engineering Research Council of Canada (NERC) [Grant 458051]. D. Krass received financial support from the NERC [Grant 458395]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0263 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0263 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3