Clustering Then Estimation of Spatio-Temporal Self-Exciting Processes

Author:

Zhang Haoting1ORCID,Zhan Donglin2ORCID,Anderson James2ORCID,Righter Rhonda1ORCID,Zheng Zeyu1ORCID

Affiliation:

1. Industrial Engineering and Operations Research Department, University of California Berkeley, Berkeley, California 94720;

2. Department of Electrical Engineering, Columbia University, New York, New York 10027

Abstract

We propose a new estimation procedure for general spatio-temporal point processes that include a self-exciting feature. Estimating spatio-temporal self-exciting point processes with observed data is challenging, partly because of the difficulty in computing and optimizing the likelihood function. To circumvent this challenge, we employ a Poisson cluster representation for spatio-temporal self-exciting point processes to simplify the likelihood function and develop a new estimation procedure called “clustering-then-estimation” (CTE), which integrates clustering algorithms with likelihood-based estimation methods. Compared with the widely used expectation-maximization (EM) method, our approach separates the cluster structure inference of the data from the model selection. This has the benefit of reducing the risk of model misspecification. Our approach is computationally more efficient because it does not need to recursively solve optimization problems, which would be needed for EM. We also present asymptotic statistical results for our approach as theoretical support. Experimental results on several synthetic and real data sets illustrate the effectiveness of the proposed CTE procedure. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: J. Anderson is supported by NSF [Grant ECCS-2144634]. R. Righter is supported by the Ron Wolff Chaired Professorship. Z. Zheng is supported by NSF [Grant DMS-2220537]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0351 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0351 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3