Solving the Minimum Sum Coloring Problem: Alternative Models, Exact Solvers, and Metaheuristics

Author:

Du Yu1ORCID,Glover Fred2,Kochenberger Gary2,Hennig Rick2,Wang Haibo3ORCID,Hulandageri Amit2

Affiliation:

1. Business School, University of Colorado Denver, Denver, Colorado 80102;

2. Entanglement, Inc., Boulder, Colorado 80305;

3. Sanchez School of Business, Texas A&M International University, Laredo, Texas 78040

Abstract

The minimum sum coloring problem (MSCP), a well-known NP-hard (nondeterministic polynomial time) problem with important practical applications, has been the subject of several papers in recent years. Because of the computational challenge posed by these problems, most solution methods employed are metaheuristics designed to find high-quality solutions with no guarantee of optimality. Exact methods (like Gurobi) and metaheuristic solvers have greatly improved in recent years, enabling high-quality and often optimal solutions to be found to a growing set of MSCPs. Alternative model forms can have a significant impact on the success of exact and heuristic methods in such settings, often providing enhanced performance compared with traditional model forms. In this paper, we introduce several alternative models for MSCP, including the quadratic unconstrained binary problem plus (QUBO-Plus) model for solving problems with constraints that are not folded into the objective function of the basic quadratic unconstrained binary problem (QUBO) model. We provide a computational study using a standard set of test problems from the literature that compares the general purpose exact solver from Gurobi with the leading QUBO metaheuristic solver NGQ and a special solver called Q-Card that belongs to the QUBO-Plus class. Our results highlight the effectiveness of the QUBO and QUBO-Plus models when solved with these metaheuristic solvers on this test bed, showing that the QUBO-Plus solver Q-Card provides the best performance for finding high-quality solutions to these important problems. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0334 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0334 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3