Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation

Author:

Mehrani Saharnaz1ORCID,Cardonha Carlos1ORCID,Bergman David1ORCID

Affiliation:

1. Department of Operations and Information Management, University of Connecticut, Storrs, Connecticut 06269

Abstract

In the bin-packing problem with minimum color fragmentation (BPPMCF), we are given a fixed number of bins and a collection of items, each associated with a size and a color, and the goal is to avoid color fragmentation by packing items with the same color within as few bins as possible. This problem emerges in areas as diverse as surgical scheduling and group event seating. We present several optimization models for the BPPMCF, including baseline integer programming formulations, alternative integer programming formulations based on two recursive decomposition strategies that utilize decision diagrams, and a branch-and-price algorithm. Using the results from an extensive computational evaluation on synthetic instances, we train a decision tree model that predicts which algorithm should be chosen to solve a given instance of the problem based on a collection of derived features. Our insights are validated through experiments on the aforementioned applications on real-world data. Summary of Contribution: In this paper, we investigate a colored variant of the bin-packing problem. We present and evaluate several exact mixed-integer programming formulations to solve the problem, including models that explore recursive decomposition strategies based on decision diagrams and a set partitioning model that we solve using branch and price. Our results show that the computational performance of the algorithms depends on features of the input data, such as the average number of items per bin. Our algorithms and featured applications suggest that the problem is of practical relevance and that instances of reasonable size can be solved efficiently.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3