Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms

Author:

Eckman David J.1ORCID,Henderson Shane G.2ORCID,Shashaani Sara3ORCID

Affiliation:

1. Wm Michael Barnes ’64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843;

2. School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853;

3. Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695

Abstract

Simulation optimization involves optimizing some objective function that can only be estimated via stochastic simulation. Many important problems can be profitably viewed within this framework. Whereas many solvers—implementations of simulation-optimization algorithms—exist or are in development, comparisons among solvers are not standardized and are often limited in scope. Such comparisons help advance solver development, clarify the relative performance of solvers, and identify classes of problems that defy efficient solution, among many other uses. We develop performance measures and plots, and estimators thereof, to evaluate and compare solvers and diagnose their strengths and weaknesses on a testbed of simulation-optimization problems. We explain the need for two-level simulation in this context and provide supporting convergence theory. We also describe how to use bootstrapping to obtain error estimates for the estimators. History: Accepted by Bruno Tuffin, area editor for simulation. Funding: This work was supported by the National Science Foundation [Grants CMMI-2035086, CMMI-2206972, and TRIPODS+X DMS-1839346]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information [ https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1261 ] or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at [ http://dx.doi.org/10.5281/zenodo.7329235 ].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3