A Neural Separation Algorithm for the Rounded Capacity Inequalities

Author:

Kim Hyeonah1ORCID,Park Jinkyoo12ORCID,Kwon Changhyun12ORCID

Affiliation:

1. Department of Industrial and Systems Engineering, KAIST, Daejeon 34141, Republic of Korea;

2. OMELET, Daejeon 34051, Republic of Korea

Abstract

The cutting plane method is a key technique for successful branch-and-cut and branch-price-and-cut algorithms that find the exact optimal solutions for various vehicle routing problems (VRPs). Among various cuts, the rounded capacity inequalities (RCIs) are the most fundamental. To generate RCIs, we need to solve the separation problem, whose exact solution takes a long time to obtain; therefore, heuristic methods are widely used. We design a learning-based separation heuristic algorithm with graph coarsening that learns the solutions of the exact separation problem with a graph neural network (GNN), which is trained with small instances of 50 to 100 customers. We embed our separation algorithm within the cutting plane method to find a lower bound for the capacitated VRP (CVRP) with up to 1,000 customers. We compare the performance of our approach with CVRPSEP, a popular separation software package for various cuts used in solving VRPs. Our computational results show that our approach finds better lower bounds than CVRPSEP for large-scale problems with 400 or more customers, whereas CVRPSEP shows strong competency for problems with less than 400 customers. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [RS-2023-00259550] and the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) [2022-0-01032, Development of Collective Collaboration Intelligence Framework for Internet of Autonomous Things]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.0310 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3