A Study on Optimal Release Schedule for Multiversion Software

Author:

Huang Yeu-Shiang1ORCID,Fang Chih-Chiang2,Chou Chun-Hsuan3,Tseng Tzu-Liang (Bill)4

Affiliation:

1. Department of Industrial and Information Management, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan 70101, Taiwan;

2. School of Computer Science and Software, Zhaoqing University, Zhaoqing 526061, China;

3. Department of Industrial and Information Management, National Cheng Kung University, Tainan 70101, Taiwan;

4. Department of Industrial, Manufacturing & Systems Engineering, University of Texas, El Paso, Texas 79968

Abstract

Research on software reliability growth models (SRGMs) has been extensively conducted for decades, and the models were often developed based on two assumptions: (1) once the errors are detected, they can be completely removed instantly, and (2) errors can be removed eternally, and the debugging tasks will not produce any new errors. However, both assumptions are unrealistic. This study proposes an SRGM that ignores these restricted assumptions by introducing a detection process that may remove an error after a period of time once it has been detected and by considering imperfect debugging, which indicates that new errors may emerge through corresponding debugging tasks. In addition, because software can be upgraded to respond on a timely basis to constantly changing consumer expectations and thus extend product life in the market, the proposed SRGM also considers software upgrades for the multiversion software, and a dynamic programming approach is used to effectively obtain the optimal release schedule with consideration of the constraint of budget. Real data sets are used to examine the effectiveness of the proposed model, and the fitting results show that the proposed model outperforms other existing models. The results of numerical validation indicate that the proposed dynamic programming method with information updating outperforms the sequential solution method in determining the optimal release time for each version. Moreover, decision makers should carefully evaluate the parameters because overestimating the parameters of the mean value functions will cause serious software risk due to excessively shortening the testing time. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0141 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0141 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3