Logic-Based Benders Decomposition for Integrated Process Configuration and Production Planning Problems

Author:

Martínez Karim Pérez1ORCID,Adulyasak Yossiri1ORCID,Jans Raf1ORCID

Affiliation:

1. GERAD and Department of Logistics and Operations Management, HEC Montréal (École des hautes études commerciales de Montréal), Montréal, Québec H3T 2A7, Canada

Abstract

We propose a general logic-based Benders decomposition (LBBD) for production planning problems with process configuration decisions. This family of problems appears in contexts where the machines are set up according to specific patterns, templates, or, in general, process configurations that allow for simultaneously producing products of different types. The problem requires determining feasible configurations for the machines and their corresponding production levels to fulfill the demand at the minimum total cost. The structure of this problem contains nonlinear constraints that link the number of units produced of each product with the used configurations and their production levels. We decompose the original problem into a master problem, where the configurations are determined, and a subproblem, where the production amounts are determined. This allows us to apply the LBBD technique to solve the problem using a standard LBBD implementation and a branch-and-check algorithm. LBBD enhancements through logic-based inequalities generated for subsets of products with common characteristics are proposed. Such inequalities represent a form of the subproblem relaxation added to the master problem during its resolution. In our computational experiments, we apply the proposed LBBD approaches to two different applications from the literature: cutting stock problems in the steel industry and a printing problem. Results show that the LBBD methods find optimal solutions much faster than the solution approaches in the literature and have a superior performance with respect to the number of instances solved to optimality and the solution quality. Summary of Contribution: In this work, we introduce a unified exact solution algorithm based on logic-based Benders decomposition to solve a class of integrated production planning problems that include process configuration decisions. We propose a general mathematical representation of the original integrated planning problem and logic-based Benders reformulations that can be applied to solve several problems within the studied class. Our implementation frameworks provide guidelines to practitioners in the field. The solution approaches in this paper together with the proposed methodological enhancements can be adapted to solve other integrated planning problems in a similar context, including the case when the original problem has a complex combinatorial and nonlinear structure.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3