SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning

Author:

de Meijer Frank1ORCID,Sotirov Renata1ORCID

Affiliation:

1. CentER, Department of Econometrics and Operations Research, Tilburg University, 5037 AB Tilburg, Netherlands

Abstract

We study the quadratic cycle cover problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the reduction and the structure of the graph, which is exploited in an efficient algorithm that constructs this matrix for any instance of the problem. To solve our relaxations, we propose an algorithm that incorporates an augmented Lagrangian method into a cutting-plane framework by utilizing Dykstra’s projection algorithm. Our algorithm is suitable for solving SDP relaxations with a large number of cutting-planes. Computational results show that our SDP bounds and efficient cutting-plane algorithm outperform other QCCP bounding approaches from the literature. Finally, we provide several SDP-based upper bounding techniques, among which is a sequential Q-learning method that exploits a solution of our SDP relaxation within a reinforcement learning environment. Summary of Contribution: The quadratic cycle cover problem (QCCP) is the problem of finding a set of node-disjoint cycles covering all the nodes in a graph such that the total interaction cost between successive arcs is minimized. The QCCP has applications in many fields, among which are robotics, transportation, energy distribution networks, and automatic inspection. Besides this, the problem has a high theoretical relevance because of its close connection to the quadratic traveling salesman problem (QTSP). The QTSP has several applications, for example, in bioinformatics, and is considered to be among the most difficult combinatorial optimization problems nowadays. After removing the subtour elimination constraints, the QTSP boils down to the QCCP. Hence, an in-depth study of the QCCP also contributes to the construction of strong bounds for the QTSP. In this paper, we study the application of semidefinite programming (SDP) to obtain strong bounds for the QCCP. Our strongest SDP relaxation is very hard to solve by any SDP solver because of the large number of involved cutting-planes. Because of that, we propose a new approach in which an augmented Lagrangian method is incorporated into a cutting-plane framework by utilizing Dykstra’s projection algorithm. We emphasize an efficient implementation of the method and perform an extensive computational study. This study shows that our method is able to handle a large number of cuts and that the resulting bounds are currently the best QCCP bounds in the literature. We also introduce several upper bounding techniques, among which is a distributed reinforcement learning algorithm that exploits our SDP relaxations.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3