A Criterion Space Branch-and-Cut Algorithm for Mixed Integer Bilinear Maximum Multiplicative Programs

Author:

Mahmoodian Vahid1,Dayarian Iman2,Ghasemi Saghand Payman1,Zhang Yu3,Charkhgard Hadi1ORCID

Affiliation:

1. Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, Florida 33620;

2. Culverhouse College of Business, The University of Alabama, Tuscaloosa, Alabama 35487;

3. Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida 33620

Abstract

This study introduces a branch-and-bound algorithm to solve mixed-integer bilinear maximum multiplicative programs (MIBL-MMPs). This class of optimization problems arises in many applications, such as finding a Nash bargaining solution (Nash social welfare optimization), capacity allocation markets, reliability optimization, etc. The proposed algorithm applies multiobjective optimization principles to solve MIBL-MMPs exploiting a special characteristic in these problems. That is, taking each multiplicative term in the objective function as a dummy objective function, the projection of an optimal solution of MIBL-MMPs is a nondominated point in the space of dummy objectives. Moreover, several enhancements are applied and adjusted to tighten the bounds and improve the performance of the algorithm. The performance of the algorithm is investigated by 400 randomly generated sample instances of MIBL-MMPs. The obtained result is compared against the outputs of the mixed-integer second order cone programming (SOCP) solver in CPLEX and a state-of-the-art algorithm in the literature for this problem. Our analysis on this comparison shows that the proposed algorithm outperforms the fastest existing method, that is, the SOCP solver, by a factor of 6.54 on average. Summary of Contribution: The scope of this paper is defined over a class of mixed-integer programs, the so-called mixed-integer bilinear maximum multiplicative programs (MIBL-MMPs). The importance of MIBL-MMPs is highlighted by the fact that they are encountered in applications, such as Nash bargaining, capacity allocation markets, reliability optimization, etc. The mission of the paper is to introduce a novel and effective criterion space branch-and-cut algorithm to solve MIBL-MMPs by solving a finite number of single-objective mixed-integer linear programs. Starting with an initial set of primal and dual bounds, our proposed approach explores the efficient set of the multiobjective problem counterpart of the MIBL-MMP through a criterion space–based branch-and-cut paradigm and iteratively improves the bounds using a branch-and-bound scheme. The bounds are obtained using novel operations developed based on Chebyshev distance and piecewise McCormick envelopes. An extensive computational study demonstrates the efficacy of the proposed algorithm.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3