bsnsing: A Decision Tree Induction Method Based on Recursive Optimal Boolean Rule Composition

Author:

Liu Yanchao1ORCID

Affiliation:

1. Department of Industrial and Systems Engineering, Wayne State University, Detroit, Michigan 48202

Abstract

This paper proposes a new mixed-integer programming (MIP) formulation to optimize split rule selection in the decision tree induction process and develops an efficient search algorithm that is able to solve practical instances of the MIP model faster than commercial solvers. The formulation is novel for it directly maximizes the Gini reduction, an effective split selection criterion that has never been modeled in a mathematical program for its nonconvexity. The proposed approach differs from other optimal classification tree models in that it does not attempt to optimize the whole tree; therefore, the flexibility of the recursive partitioning scheme is retained, and the optimization model is more amenable. The approach is implemented in an open-source R package named bsnsing. Benchmarking experiments on 75 open data sets suggest that bsnsing trees are the most capable of discriminating new cases compared with trees trained by other decision tree codes including the rpart, C50, party, and tree packages in R. Compared with other optimal decision tree packages, including DL8.5, OSDT, GOSDT, and indirectly more, bsnsing stands out in its training speed, ease of use, and broader applicability without losing in prediction accuracy. History: Accepted by RamRamesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Science Foundation Division of Civil, MechanicalandManufacturing Innovation [Grant 1944068]. Supplemental Material: Data are available at https://doi.org/10.1287/ijoc.2022.1225 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3