Optimal Power Flow in Distribution Networks Under N – 1 Disruptions: A Multistage Stochastic Programming Approach

Author:

Yang Haoxiang12ORCID,Nagarajan Harsha3ORCID

Affiliation:

1. Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545;

2. School of Data Science, The Chinese University of Hong Kong, Shenzhen 518172, China;

3. Theoretical Division (T-5), Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

Contingency research to find optimal operations and postcontingency recovery plans in distribution networks has gained major attention in recent years. To this end, we consider a multiperiod optimal power flow problem in distribution networks, subject to the N – 1 contingency in which a line or distributed energy resource fails. The contingency can be modeled as a stochastic disruption, an event with random magnitude and timing. Assuming a specific recovery time, we formulate a multistage stochastic convex program and develop a decomposition algorithm based on stochastic dual dynamic programming. Realistic modeling features, such as linearized AC power flow physics, engineering limits, and battery devices with realistic efficiency curves, are incorporated. We present extensive computational tests to show the efficiency of our decomposition algorithm and out-of-samplex performance of our solution compared with its deterministic counterpart. Operational insights on battery utilization, component hardening, and length of recovery phase are obtained by performing analyses from stochastic disruption-aware solutions. Summary of Contribution: Stochastic disruptions are random in time and can significantly alter the operating status of a distribution power network. Most of the previous research focuses on the magnitude aspect with a fixed set of time points in which randomness is observed. Our paper provides a novel multistage stochastic programming model for stochastic disruptions, considering both the uncertainty in timing and magnitude. We propose a computationally efficient cutting-plane method to solve this large-scale model and prove the theoretical convergence of such a decomposition algorithm. We present computational results to substantiate and demonstrate the theoretical convergence and provide operational insights into how making infrastructure investments can hedge against stochastic disruptions via sensitivity analyses.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3