A Numerically Exact Algorithm for the Bin-Packing Problem

Author:

Baldacci Roberto1ORCID,Coniglio Stefano2ORCID,Cordeau Jean-François3ORCID,Furini Fabio4ORCID

Affiliation:

1. Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar;

2. Department of Economics, University of Bergamo, 24127 Bergamo, Italy;

3. Chair in Logistics and Transportation, HEC Montréal, Montreal H3T 2A7, Canada;

4. Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy

Abstract

We propose a numerically exact algorithm for solving the Bin-Packing Problem (BPP) based on a branch-price-and-cut framework combined with a pattern-enumeration method. Key to the algorithm is a novel technique for the computation of numerically safe dual bounds for the widely adopted set covering reformulation of the BPP (tightened with additional valid inequalities) with a precision that is higher than the one of general-purpose floating-point solvers. Our branch-price-and-cut algorithm also relies on an exact integer (fixed-point) label setting algorithm for solving the pricing problem associated with the tightened set-covering formulation. To the best of our knowledge, ours is the first algorithm for the BPP that is numerically exact and practical for solving large-scale instances. Extensive computational results on instances affected by notorious numerical difficulties (those of the Augmented Non-IRUP class) show that our exact algorithm outperforms all of the not numerically exact state-of-the-art algorithms based on branch-and-cut-and-price techniques that rely on a set-covering formulation of the BPP. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms − Discrete.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3