Robust Parallel Pursuit for Large-Scale Association Network Learning

Author:

Li Wenhui1ORCID,Zhou Xin1ORCID,Dong Ruipeng1ORCID,Zheng Zemin1ORCID

Affiliation:

1. International Institute of Finance, The School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

Sparse reduced-rank regression is an important tool to uncover the large-scale response-predictor association network, as exemplified by modern applications such as the diffusion networks, and recommendation systems. However, the association networks recovered by existing methods are either sensitive to outliers or not scalable under the big data setup. In this paper, we propose a new statistical learning method called robust parallel pursuit (ROP) for joint estimation and outlier detection in large-scale response-predictor association network analysis. The proposed method is scalable in that it transforms the original large-scale network learning problem into a set of sparse unit-rank estimations via factor analysis, thus facilitating an effective parallel pursuit algorithm. Furthermore, we provide comprehensive theoretical guarantees including consistency in parameter estimation, rank selection, and outlier detection, and we conduct an inference procedure to quantify the uncertainty of existence of outliers. Extensive simulation studies and two real-data analyses demonstrate the effectiveness and the scalability of the suggested approach. History: Accepted by Ram Ramesh, Area Editor/Data Science & Machine Learning. Funding: This work was supported by the National Key R&D Program of China [Grant 2022YFA1008000], Natural Science Foundation of China [Grants 72071187, 72091212, 71731010, and 71921001], China Postdoctoral Science Foundation [Grant 2023M733402], and Fundamental Research Funds for the Central Universities [Grants WK3470000017, WK2040000027, and WK2040000079]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0181 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0181 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3