Rapid Influence Maximization on Social Networks: The Positive Influence Dominating Set Problem

Author:

Raghavan S.1ORCID,Zhang Rui2ORCID

Affiliation:

1. Robert H. Smith School of Business & Institute for Systems Research, University of Maryland, College Park, Maryland 20742

2. Leeds School of Business, University of Colorado, Boulder, Colorado 80309

Abstract

Motivated by applications arising on social networks, we study a generalization of the celebrated dominating set problem called the Positive Influence Dominating Set (PIDS). Given a graph G with a set V of nodes and a set E of edges, each node i in V has a weight bi, and a threshold requirement gi. We seek a minimum weight subset T of V, so that every node i not in T is adjacent to at least gi members of T. When gi is one for all nodes, we obtain the weighted dominating set problem. First, we propose a strong and compact extended formulation for the PIDS problem. We then project the extended formulation onto the space of the natural node-selection variables to obtain an equivalent formulation with an exponential number of valid inequalities. Restricting our attention to trees, we show that the extended formulation is the strongest possible formulation, and its projection (onto the space of the node variables) gives a complete description of the PIDS polytope on trees. We derive the necessary and sufficient facet-dening conditions for the valid inequalities in the projection and discuss their polynomial time separation. We embed this (exponential size) formulation in a branch-and-cut framework and conduct computational experiments using real-world graph instances, with up to approximately 2.5 million nodes and 8 million edges. On a test-bed of 100 real-world graph instances, our approach finds solutions that are on average 0.2% from optimality and solves 51 out of the 100 instances to optimality. Summary of Contribution: In influence maximization problems, a decision maker wants to target individuals strategically to cause a cascade at a minimum cost over a social network. These problems have attracted significant attention as their applications can be found in many different domains including epidemiology, healthcare, marketing, and politics. However, computationally solving large-scale influence maximization problems to near optimality remains a substantial challenge for the computing community, which thus represent significant opportunities for the development of operations-research based models, algorithms, and analysis in this interface. This paper studies the positive influence dominating set (PIDS) problem, an influence maximization problem on social networks that generalizes the celebrated dominating set problem. It focuses on developing exact methods for solving large instances to near optimality. In other words, the approach results in strong bounds, which then provide meaningful comparative benchmarks for heuristic approaches. The paper first shows that straightforward generalizations of well-known formulations for the dominating set problem do not yield strong (i.e., computationally viable) formulations for the PIDS problem. It then strengthens these formulations by proposing a compact extended formulation and derives its projection onto the space on the natural node-selection variables, resulting in two equivalent (stronger) formulations for the PIDS problem. The projected formulation on the natural node-variables contains a new class of valid inequalities that are shown to be facet-defining for the PIDS problem. These theoretical results are complemented by in-depth computational experiments using a branch-and-cut framework, on a testbed of 100 real-world graph instances, with up to approximately 2.5 million nodes and 8 million edges. They demonstrate the effectiveness of the proposed formulation in solving large scale problems finding solutions that are on average 0.2% from optimality and solving 51 of the 100 instances to optimality.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Impact of Passive Social Media Viewers in Influence Maximization;INFORMS Journal on Computing;2024-03-29

2. The influence coverage optimization problem;IISE Transactions;2023-09-25

3. Dominance Maximization in Uncertain Graphs;Advanced Data Mining and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3