Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks

Author:

Böttcher Lucas1ORCID,Asikis Thomas2ORCID,Fragkos Ioannis3ORCID

Affiliation:

1. Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, 60322 Frankfurt, Germany;

2. Game Theory, University of Zurich, 8092 Zurich, Switzerland;

3. Department of Technology and Operations Management, Rotterdam School of Management, Erasmus University Rotterdam, 3062 Rotterdam, Netherlands

Abstract

A key challenge in inventory management is to identify policies that optimally replenish inventory from multiple suppliers. To solve such optimization problems, inventory managers need to decide what quantities to order from each supplier given the net inventory and outstanding orders so that the expected backlogging, holding, and sourcing costs are jointly minimized. Inventory management problems have been studied extensively for more than 60 years, and yet even basic dual-sourcing problems, in which orders from an expensive supplier arrive faster than orders from a regular supplier, remain intractable in their general form. In addition, there is an emerging need to develop proactive, scalable optimization algorithms that can adjust their recommendations to dynamic demand shifts in a timely fashion. In this work, we approach dual sourcing from a neural network–based optimization lens and incorporate information on inventory dynamics and its replenishment (i.e., control) policies into the design of recurrent neural networks. We show that the proposed neural network controllers (NNCs) are able to learn near-optimal policies of commonly used instances within a few minutes of CPU time on a regular personal computer. To demonstrate the versatility of NNCs, we also show that they can control inventory dynamics with empirical, nonstationary demand distributions that are challenging to tackle effectively using alternative, state-of-the-art approaches. Our work shows that high-quality solutions of complex inventory management problems with nonstationary demand can be obtained with deep neural network optimization approaches that directly account for inventory dynamics in their optimization process. As such, our research opens up new ways of efficiently managing complex, high-dimensional inventory dynamics. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NCCR Automation) [Grant P2EZP2 191888] and the Army Research Office [Grant W911NF-23-1-0129]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0136 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0136 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3