Platoon Optimization Based on Truck Pairs

Author:

Bhoopalam Anirudh Kishore1ORCID,Agatz Niels1ORCID,Zuidwijk Rob1ORCID

Affiliation:

1. Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands

Abstract

Truck platooning technology allows trucks to drive at short headways to save fuel and associated emissions. However, fuel savings from platooning are relatively small, so forming platoons should be convenient and associated with minimum detours and delays. In this paper, we focus on developing optimization technology to form truck platoons. We formulate a mathematical program for the platoon routing problem with time windows (PRP-TW) based on a time–space network. We provide polynomial-time algorithms to solve special cases of PRP-TW with two-truck platoons. Based on these special cases, we build several fast heuristics. An extensive set of numerical experiments shows that our heuristics perform well. Moreover, we show that simple two-truck platoons already capture most of the potential savings of platooning. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Funding: This work was supported by the Netherlands Organization for Scientific Research (NWO) as part of the Spatial and Transport Impacts of Automated Driving [Grant 438-15-161] project. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2020.0302 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2020.0302 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved decomposition-based heuristic for truck platooning;Computers & Operations Research;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3