Combination Chemotherapy Optimization with Discrete Dosing

Author:

Ajayi Temitayo1ORCID,Hosseinian Seyedmohammadhossein2ORCID,Schaefer Andrew J.3ORCID,Fuller Clifton D.4ORCID

Affiliation:

1. Nature Source Improved Plants, Ithaca, New York 14850;

2. Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221;

3. Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, Texas 77005;

4. Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

Abstract

Chemotherapy drug administration is a complex problem that often requires expensive clinical trials to evaluate potential regimens; one way to alleviate this burden and better inform future trials is to build reliable models for drug administration. This paper presents a mixed-integer program for combination chemotherapy (utilization of multiple drugs) optimization that incorporates various important operational constraints and, besides dose and concentration limits, controls treatment toxicity based on its effect on the count of white blood cells. To address the uncertainty of tumor heterogeneity, we also propose chance constraints that guarantee reaching an operable tumor size with a high probability in a neoadjuvant setting. We present analytical results pertinent to the accuracy of the model in representing biological processes of chemotherapy and establish its potential for clinical applications through a numerical study of breast cancer. History: Accepted by Paul Brooks, Area Editor for Applications in Biology, Medicine, & Healthcare. Funding: This work was supported by the National Science Foundation [Grants CMMI-1933369 and CMMI-1933373]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0207 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0207 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3