Variable Bound Tightening and Valid Constraints for Multiperiod Blending

Author:

Chen Yifu1ORCID,Maravelias Christos T.23ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706

2. Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544

3. Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544

Abstract

Multiperiod blending has a number of important applications in a range of industrial sectors. It is typically formulated as a nonconvex mixed integer nonlinear program (MINLP), which involves binary variables and bilinear terms. In this study, we first propose a reformulation of the constraints involving bilinear terms using lifting. We introduce a method for calculating tight bounds on the lifted variables calculated by aggregating multiple constraints. We propose valid constraints derived from the reformulation-linearization technique (RLT) that use the bounds on the lifted variables to further tighten the formulation. Computational results indicate our method can substantially reduce the solution time and optimality gap. Summary of Contribution: In this paper, we study the multiperiod blending problem, which has a number of important applications in a range of industrial sectors, such as refining, chemical production, mining, and wastewater management. Solving this problem efficiently leads to significant economic and environmental benefits. However, solving even medium-scale instances to global optimality remains challenging. To address this challenge, we propose a variable bound tightening algorithm and tightening constraints for multiperiod blending. Computational results show that our methods can substantially reduce the solution time and optimality gap.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3