Dynamic Discretization Discovery Algorithms for Time-Dependent Shortest Path Problems

Author:

He Edward Yuhang1ORCID,Boland Natashia1ORCID,Nemhauser George1,Savelsbergh Martin1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Finding a shortest path in a network is a fundamental optimization problem. We focus on settings in which the travel time on an arc in the network depends on the time at which traversal of the arc begins. In such settings, reaching the destination as early as possible is not the only objective of interest. Minimizing the duration of the path, that is, the difference between the arrival time at the destination and the departure from the origin, and minimizing the travel time along the path from origin to destination, are also of interest. We introduce dynamic discretization discovery algorithms to efficiently solve such time-dependent shortest path problems with piecewise linear arc travel time functions. The algorithms operate on partially time-expanded networks in which arc costs represent lower bounds on the arc travel time over the subsequent time interval. A shortest path in this partially time-expanded network yields a lower bound on the value of an optimal path. Upper bounds are easily obtained as by-products of the lower bound calculations. The algorithms iteratively refine the discretization by exploiting breakpoints of the arc travel time functions. In addition to time discretization refinement, the algorithms permit time intervals to be eliminated, improving lower and upper bounds, until, in a finite number of iterations, optimality is proved. Computational experiments show that only a small fraction of breakpoints must be explored and that the fraction decreases as the length of the time horizon and the size of the network increases, making the algorithms highly efficient and scalable. Summary of Contribution: New data collection techniques have increased the availability and fidelity of time-dependent travel time information, making the time-dependent variant of the classic shortest path problem an extremely relevant problem in the field of operations research. This paper provides novel algorithms for the time-dependent shortest path problem with both the minimum duration and minimum travel time objectives, which aims to address the computational challenges faced by existing algorithms. A computational study shows that our new algorithm is indeed significantly more efficient than existing approaches.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3