Sparse Solutions by a Quadratically Constrained ℓq (0 < q < 1) Minimization Model

Author:

Jiang Shan1ORCID,Fang Shu-Cherng2ORCID,Jin Qingwei3ORCID

Affiliation:

1. School of Management, Xiamen University, Xiamen 361005, China;

2. Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695;

3. Department of Data Science and Engineering Management, School of Management, Zhejiang University, Hangzhou 310058, China

Abstract

Finding sparse solutions to a system of equations and/or inequalities is an important topic in many application areas such as signal processing, statistical regression and nonparametric modeling. Various continuous relaxation models have been proposed and widely studied to deal with the discrete nature of the underlying problem. In this paper, we propose a quadratically constrained [Formula: see text] (0 < q < 1) minimization model for finding sparse solutions to a quadratic system. We prove that solving the proposed model is strongly NP-hard. To tackle the computation difficulty, a first order necessary condition for local minimizers is derived. Various properties of the proposed model are studied for designing an active-set-based descent algorithm to find candidate solutions satisfying the proposed condition. In addition to providing a theoretical convergence proof, we conduct extensive computational experiments using synthetic and real-life data to validate the effectiveness of the proposed algorithm and to show the superior capability in finding sparse solutions of the proposed model compared with other known models in the literature. We also extend our results to a quadratically constrained [Formula: see text] (0 < q < 1) minimization model with multiple convex quadratic constraints for further potential applications. Summary of Contribution: In this paper, we propose and study a quadratically constrained [Formula: see text] minimization (0 < q < 1) model for finding sparse solutions to a quadratic system which has wide applications in sparse signal recovery, image processing and machine learning. The proposed quadratically constrained [Formula: see text] minimization model extends the linearly constrained [Formula: see text] and unconstrained [Formula: see text]-[Formula: see text] models. We study various properties of the proposed model in aim of designing an efficient algorithm. Especially, we propose an unrelaxed KKT condition for local/global minimizers. Followed by the properties studied, an active-set based descent algorithm is then proposed with its convergence proof being given. Extensive numerical experiments with synthetic and real-life Sparco datasets are conducted to show that the proposed algorithm works very effectively and efficiently. Its sparse recovery capability is superior to that of other known models in the literature.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3