ExpertRNA: A New Framework for RNA Secondary Structure Prediction

Author:

Liu Menghan1,Poppleton Erik2,Pedrielli Giulia1ORCID,Šulc Petr2,Bertsekas Dimitri P.13

Affiliation:

1. School of Computing Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona 85281;

2. School of Molecular Sciences and Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281;

3. Massachusetts Institute of Technology, Electrical Engineering, Cambridge, Massachusetts 02139

Abstract

Ribonucleic acid (RNA) is a fundamental biological molecule that is essential to all living organisms, performing a versatile array of cellular tasks. The function of many RNA molecules is strongly related to the structure it adopts. As a result, great effort is being dedicated to the design of efficient algorithms that solve the “folding problem”—given a sequence of nucleotides, return a probable list of base pairs, referred to as the secondary structure prediction. Early algorithms largely rely on finding the structure with minimum free energy. However, the predictions rely on effective simplified free energy models that may not correctly identify the correct structure as the one with the lowest free energy. In light of this, new, data-driven approaches that not only consider free energy, but also use machine learning techniques to learn motifs are also investigated and recently been shown to outperform free energy–based algorithms on several experimental data sets. In this work, we introduce the new ExpertRNA algorithm that provides a modular framework that can easily incorporate an arbitrary number of rewards (free energy or nonparametric/data driven) and secondary structure prediction algorithms. We argue that this capability of ExpertRNA has the potential to balance out different strengths and weaknesses of state-of-the-art folding tools. We test ExpertRNA on several RNA sequence-structure data sets, and we compare the performance of ExpertRNA against a state-of-the-art folding algorithm. We find that ExpertRNA produces, on average, more accurate predictions of nonpseudoknotted secondary structures than the structure prediction algorithm used, thus validating the promise of the approach. Summary of Contribution: ExpertRNA is a new algorithm inspired by a biological problem. It is applied to solve the problem of secondary structure prediction for RNA molecules given an input sequence. The computational contribution is given by the design of a multibranch, multiexpert rollout algorithm that enables the use of several state-of-the-art approaches as base heuristics and allowing several experts to evaluate partial candidate solutions generated, thus avoiding assuming the reward being optimized by an RNA molecule when folding. Our implementation allows for the effective use of parallel computational resources as well as to control the size of the rollout tree as the algorithm progresses. The problem of RNA secondary structure prediction is of primary importance within the biology field because the molecule structure is strongly related to its functionality. Whereas the contribution of the paper is in the algorithm, the importance of the application makes ExpertRNA a showcase of the relevance of computationally efficient algorithms in supporting scientific discovery.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3