A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems

Author:

Krug Richard1,Leugering Günter1,Martin Alexander2,Schmidt Martin3ORCID,Weninger Dieter1ORCID

Affiliation:

1. Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;

2. Department of Liberal Arts and Sciences, University of Technology Nuremberg, D-90443 Nürnberg, Germany;

3. Department of Mathematics, Trier University, 54296 Trier, Germany

Abstract

We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel and may result in simpler classes of optimization problems because not every block necessarily contains mixed-integer or nonlinear aspects. For achieving feasibility at the interfaces of the several blocks, we employ a tailored consensus-based penalty alternating direction method. Our numerical results show that such decomposition techniques can outperform the baseline approach of just solving the overall MINLP from scratch. However, a complete answer to the question of how to decompose MINLPs on graphs in dependence of the given model is still an open topic for future research. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by Deutsche Forschungsgemeinschaft [Grant TRR 154].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3