Affiliation:
1. School of Economics and Management, Tongji University, Shanghai 200092, China;
2. School of Management and School of Data Science, Fudan University, Shanghai 200433, China
Abstract
To use simulation models to study the behaviors of stochastic systems, one needs to specify the distribution of the input random variables. However, specifying this distribution precisely is typically difficult and even impossible in practice. The issue is known as input uncertainty in the simulation literature, and it has been considered and studied extensively in recent years. In this paper, we model the uncertainty by an ambiguity set that is defined based on the likelihood ratio between the true (unknown) distribution and the nominal distribution (i.e., the best estimate), and develop a robust simulation (RS) approach that estimates the worst-case values of performance measures of the random simulation output when the true distribution varies in the ambiguity set. We show that the RS approach is computationally tractable, and the corresponding results reveal important information of the stochastic systems and help decision makers make better decisions.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献