Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets

Author:

Ruan Haolin1ORCID,Chen Zhi2ORCID,Ho Chin Pang1ORCID

Affiliation:

1. School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong;

2. Department of Management Sciences, College of Business, City University of Hong Kong, Kowloon Tong, Hong Kong

Abstract

We study adjustable distributionally robust optimization problems, where their ambiguity sets can potentially encompass an infinite number of expectation constraints. Although such ambiguity sets have great modeling flexibility in characterizing uncertain probability distributions, the corresponding adjustable problems remain computationally intractable and challenging. To overcome this issue, we propose a greedy improvement procedure that consists of solving, via the (extended) linear decision rule approximation, a sequence of tractable subproblems—each of which considers a relaxed and finitely constrained ambiguity set that can be iteratively tightened to the infinitely constrained one. Through three numerical studies of adjustable distributionally robust optimization models, we show that our approach can yield improved solutions in a systematic way for both two-stage and multistage problems. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: Financial support by the Early Career Scheme from the Hong Kong Research Grants Council [Project No. CityU 21502820], the CityU Start-Up Grant [Project No. 9610481], the CityU Strategic Research Grant [Project No. 7005688], the National Natural Science Foundation of China [Project No. 72032005], and Chow Sang Sang Group Research Fund sponsored by Chow Sang Sang Holdings International Limited [Project No. 9229076] is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0181 ), as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0181 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3