A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm

Author:

Seo Kiho1ORCID,Joung Seulgi2ORCID,Lee Chungmok3ORCID,Park Sungsoo1ORCID

Affiliation:

1. Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea;

2. Department of Industrial Engineering, Chonnam National University, Gwangju, Republic of Korea;

3. Department of Industrial and Management Engineering, Hankuk University of Foreign Studies, Youngin-si, Republic of Korea

Abstract

The Benders decomposition algorithm often shows poor convergence. To improve the convergence of the Benders decomposition algorithm. Recently, it was proposed the use of feasibility cuts closest to a solution in the set defined by all feasibility cuts. We extend this feasibility cut selection scheme to a new cut selection scheme for optimality cuts and propose a new Benders separation framework that a single linear programming problem can solve. We show that optimality cuts generated by this scheme are Pareto optimal when some conditions are satisfied. Theoretical connections to the existing Benders cut generation methods are also identified. Extensive computational experiments on the multiple classes of benchmark problems demonstrate that the proposed algorithm improves the convergence speed and computational time. Summary of Contribution: The Benders decomposition algorithm is one of the most widely used algorithms in operations research. However, the Benders decomposition algorithm often shows poor convergence for some optimization problems. In this paper, to improve the convergence of the Benders decomposition algorithm, we propose a unified closest Benders cut generation scheme. We give theoretical properties of the proposed Benders cuts, including Pareto optimality and facet-defining conditions. Also, we conducted extensive computational tests on various instances, such as network design and expansion problems. The results show the effectiveness of the closest Benders cut compared with existing algorithms and Cplex.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3