Logic-Based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling

Author:

Guo Cheng1ORCID,Bodur Merve1ORCID,Aleman Dionne M.123,Urbach David R.45

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada;

2. Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario M5S 3E3, Canada;

3. Techna Institute at University Health Network, Toronto, Ontario M5G 1P5, Canada;

4. Department of Surgery, University of Toronto, Toronto, Ontario M5S 3E3, Canada;

5. Department of Surgery, Women’s College Hospital, Toronto, Ontario M5S 1B2, Canada

Abstract

The distributed operating room (OR) scheduling problem aims to find an assignment of surgeries to ORs across collaborating hospitals that share their waiting lists and ORs. We propose a stochastic extension of this problem where surgery durations are considered to be uncertain. In order to obtain solutions for the challenging stochastic model, we use sample average approximation and develop two enhanced decomposition frameworks that use logic-based Benders (LBBD) optimality cuts and binary decision diagram based Benders cuts. Specifically, to the best of our knowledge, deriving LBBD optimality cuts in a stochastic programming context is new to the literature. Our computational experiments on a hospital data set illustrate that the stochastic formulation generates robust schedules and that our algorithms improve the computational efficiency. Summary of Contribution: We propose a new model for an important problem in healthcare scheduling, namely, stochastic distributed operating room scheduling, which is inspired by a current practice in Toronto, Ontario, Canada. We develop two decomposition methods that are computationally faster than solving the model directly via a state-of-the-art solver. We present both some theoretical results for our algorithms and numerical results for the evaluation of the model and algorithms. Compared with its deterministic counterpart in the literature, our model shows improvement in relevant evaluation metrics for the underlying scheduling problem. In addition, our algorithms exploit the structure of the model and improve its solvability. Those algorithms also have the potential to be used to tackle other planning and scheduling problems with a similar structure.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3