Appointment Scheduling with Delay Tolerance Heterogeneity

Author:

Wang Shuming12ORCID,Li Jun3ORCID,Ang Marcus4ORCID,Ng Tsan Sheng3ORCID

Affiliation:

1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China;

2. MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Beijing 100190, China;

3. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 117576, Singapore;

4. Lee Kong Chian School of Business, Singapore Management University, Singapore 178899, Singapore

Abstract

In this study, we investigate an appointment sequencing and scheduling problem with heterogeneous user delay tolerances under service time uncertainty. We aim to capture the delay tolerance effect with heterogeneity, in an operationally effective and computationally tractable fashion, for the appointment scheduling problem. To this end, we first propose a Tolerance-Aware Delay (TAD) index that incorporates explicitly the user tolerance information in delay evaluation. We show that the TAD index enjoys decision-theoretical rationale in terms of Tolerance sensitivity, monotonicity, and convexity and positive homogeneity, which enables it to incorporate the frequency and intensity of delays over the tolerance in a coherent manner. Specifically, the convexity of TAD index ensures a tractable modeling of the collective delay dissatisfaction in the appointment scheduling problem. Using the TAD index, we then develop an appointment model with known empirical service time distribution that minimizes the overall tolerance-aware delays of all users. We analyze the impact of delay tolerance on the sequence and schedule decisions and show that the resultant TAD appointment model can be reformulated as a mixed-integer linear program (MILP). Furthermore, we extend the TAD appointment model by considering service time ambiguity. In particular, we encode into the TAD index a moment ambiguity set and a Wasserstein ambiguity set, respectively. The former captures effectively the correlation among service times across positions and user types, whereas the latter captures directly the service time data information. We show that both of the resultant TAD models under ambiguity can be reformulated as polynomial-sized, mixed-integer conic programs (MICPs). Finally, we compare our TAD models with some existing counterpart approaches and the current practice using synthetic data and a case of real hospital data, respectively. Our results demonstrate the effectiveness of the TAD appointment models in capturing the user delay tolerance with heterogeneity and mitigating the worst-case delays. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: S. Wang was supported by the National Natural Science Foundation of China [Grants 71922020, 72171221, and 71988101, entitled “Econometric Modeling and Economic Policy Studies”], the Fundamental Research Funds for the Central Universities [Grant UCAS-E2ET0808X2], and the Major Program of National Natural Science Foundation of China [Grant 72192843]. S. Wang was also supported by a grant from MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation at UCAS. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0025 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0025 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3