Dynamic Exception Points for Fair Liver Allocation

Author:

Celdir Musa Eren1,Akan Mustafa1ORCID,Tayur Sridhar1ORCID

Affiliation:

1. Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217

Abstract

There are disparities in access to livers based on transplant patients’ height, which disproportionately affects Hispanics, Asians, and women (across all ethnicities), because short patients can receive transplants from a smaller pool of available deceased donors for medical reasons. Reduced likelihood of transplantation leads to higher mortality rates and longer waiting times. We analyze fairness within the current U.S. liver allocation system where patients receive priority dynamically, based on their model for end-stage liver disease (MELD) scores, which reflect the severity of liver disease. We propose a simple adjustment, providing additional (exception) points based on height and MELD score, that can be easily implemented in practice, which materially reduces the disparity without sacrificing overall efficiency. We model the liver allocation system as a multiclass fluid model of overloaded queues with heterogeneous servers. We impose explicit equity constraints for all static patient classes, that is, height. We characterize the optimal solution under the objective of minimizing pretransplant mortality. The discretized version of the optimal policy is numerically solved using estimates from clinical data and a detailed simulation study demonstrates its effectiveness. The optimal policy, called the equity adjusted mortality risk policy, advocates ranking patients based on their short-term mortality risk adjusted for equity among height classes. Interpretation of the shadow prices of equity constraints in the optimal control problem as MELD exception points is novel in the transplant context since they can be seamlessly mapped into the existing system. Our simulations show that for women, the disparity can be almost completely eliminated. Hispanics and Asians greatly benefit from receiving these MELD exception points also. Our work provides a remedy to reduce the disparities in access to liver transplantation within the MELD-based allocation. Our approach can help the on-going analysis of the continuous distribution model for livers because it also considers aspects of candidate biology, notably height and body surface area. Funding: M. Akan was supported by the National Science Foundation [Grant CMMI-1334194] and the Carnegie Mellon University (CMU) [Onetto Fellowship in Operations Management]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/serv.2023.0092 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3