Sampling-Based Approximation Schemes for Capacitated Stochastic Inventory Control Models

Author:

Cheung Wang Chi1ORCID,Simchi-Levi David2ORCID

Affiliation:

1. Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632;

2. Department of Civil and Environmental Engineering, and MIT Institute for Data, Systems, and Society, and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

We study the classical multiperiod capacitated stochastic inventory control problems in a data-driven setting. Instead of assuming full knowledge of the demand distributions, we assume that the demand distributions can only be accessed through drawing random samples. Such data-driven models are ubiquitous in practice, where the cumulative distribution functions of the underlying random demand are either unavailable or too complex to work with. We consider the sample average approximation (SAA) method for the problem and establish an upper bound on the number of samples needed for the SAA method to achieve a near-optimal expected cost, under any level of required accuracy and prespecified confidence probability. The sample bound is polynomial in the number of time periods as well as the confidence and accuracy parameters. Moreover, the bound is independent of the underlying demand distributions. However, the SAA requires solving the SAA problem, which is #P-hard. Thus, motivated by the SAA analysis, we propose a polynomial time approximation scheme that also uses polynomially many samples. Finally, we establish a lower bound on the number of samples required to solve this data-driven newsvendor problem to near-optimality.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3