Variance Regularization in Sequential Bayesian Optimization

Author:

Kim Michael Jong1ORCID

Affiliation:

1. Sauder School of Business, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada

Abstract

Sequential Bayesian optimization constitutes an important and broad class of problems where model parameters are not known a priori but need to be learned over time using Bayesian updating. It is known that the solution to these problems can in principle be obtained by solving the Bayesian dynamic programming (BDP) equation. Although the BDP equation can be solved in certain special cases (for example, when posteriors have low-dimensional representations), solving this equation in general is computationally intractable and remains an open problem. A second unresolved issue with the BDP equation lies in its (rather generic) interpretation. Beyond the standard narrative of balancing immediate versus future costs—an interpretation common to all dynamic programs with or without learning—the BDP equation does not provide much insight into the underlying mechanism by which sequential Bayesian optimization trades off between learning (exploration) and optimization (exploitation), the distinguishing feature of this problem class. The goal of this paper is to develop good approximations (with error bounds) to the BDP equation that help address the issues of computation and interpretation. To this end, we show how the BDP equation can be represented as a tractable single-stage optimization problem that trades off between a myopic term and a “variance regularization” term that measures the total solution variability over the remaining planning horizon. Intuitively, the myopic term can be regarded as a pure exploitation objective that ignores the impact of future learning, whereas the variance regularization term captures a pure exploration objective that only puts value on solutions that resolve statistical uncertainty. We develop quantitative error bounds for this representation and prove that the error tends to zero like o(n-1) almost surely in the number of stages n, which as a corollary, establishes strong consistency of the approximate solution.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3