A Benders Decomposition Approach for the Multivehicle Production Routing Problem with Order-up-to-Level Policy

Author:

Zhang Zhenzhen1ORCID,Luo Zhixing23ORCID,Baldacci Roberto4ORCID,Lim Andrew5

Affiliation:

1. School of Economics and Management, Tongji University, Shanghai 200092, China;

2. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore;

3. School of Management and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China;

4. Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi,” University of Bologna, Cesena 47521, Italy

5. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 119077

Abstract

The production routing problem (PRP) arises in the applications of integrated supply chain which jointly optimize the production, inventory, distribution, and routing decisions. The literature on this problem is quite rare due to its complexity. In this paper, we consider the multivehicle PRP (MVPRP) with order-up-to-level inventory replenishment policy, where every time a customer is visited, the quantity delivered is such that the maximum inventory level is reached. We propose an exact Benders’ decomposition approach to solve the MVPRP, which decomposes the problem as a master problem and a slave problem. The master problem decides whether to produce the product, the quantity to be produced, and the customers to be replenished for every period of the planning horizon. The resulting slave problem decomposes into a capacitated vehicle routing problem for each period of the planning horizon where each problem is solved using an exact algorithm based on the set partitioning model, and the identified feasibility and optimality cuts are added to the master problem to guide the solution process. Valid inequalities and initial optimality cuts are used to strengthen the linear programming relaxation of the master formulation. The exact method is tested on MVPRP instances and on instances of the multivehicle vendor-managed inventory routing problem, a special case of the MVPRP, and the good performance of the proposed approach is demonstrated.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3