Location of Charging Stations in Electric Car Sharing Systems

Author:

Brandstätter Georg1ORCID,Leitner Markus12ORCID,Ljubić Ivana3ORCID

Affiliation:

1. Department of Statistics and Operations Research, University of Vienna, 1090 Vienna, Austria;

2. Department of Supply Chain Analytics, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands;

3. ESSEC Business School, 95021 Cergy Pontoise, France

Abstract

Electric vehicles are prime candidates for use within urban car sharing systems, both from economic and environmental perspectives. However, their relatively short range necessitates frequent and rather time-consuming recharging throughout the day. Thus, charging stations must be built throughout the system’s operational area where cars can be charged between uses. In this work, we introduce and study an optimization problem that models the task of finding optimal locations and sizes for charging stations, using the number of expected trips that can be accepted (or their resulting revenue) as a gauge of quality. Integer linear programming formulations and construction heuristics are introduced, and the resulting algorithms are tested on grid-graph-based instances, as well as on real-world instances from Vienna. The results of our computational study show that the best-performing exact algorithm solves most of the benchmark instances to optimality and usually provides small optimality gaps for the remaining ones, whereas our heuristics provide high-quality solutions very quickly. Our algorithms also provide better solutions than a sequential approach that considers strategic and operational decisions separately. A cross-validation study analyzes the algorithms’ performance in cases where demand is uncertain and shows the advantage of combining individual solutions into a single consensus solution, and a simulation study investigates their behavior in car sharing systems that provide their customers with more flexibility regarding vehicle selection.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3