The Airlift Planning Problem

Author:

Bertsimas Dimitris1ORCID,Chang Allison2,Mišić Velibor V.3ORCID,Mundru Nishanth4

Affiliation:

1. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

3. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420;

4. Anderson School of Management, University of California, Los Angeles, Los Angeles, California 90095

Abstract

The U.S. Transportation Command (USTRANSCOM) is responsible for planning and executing the transportation of U.S. military personnel and cargo by air, land, and sea. The airlift planning problem faced by the air component of USTRANSCOM is to decide how requirements (passengers and cargo) will be assigned to the available aircraft fleet and the sequence of pickups and drop-offs that each aircraft will perform to ensure that the requirements are delivered with minimal delay and with maximum utilization of the available aircraft. This problem is of significant interest to USTRANSCOM because of the highly time-sensitive nature of the requirements that are typically designated for delivery by airlift, as well as the very high cost of airlift operations. At the same time, the airlift planning problem is extremely difficult to solve because of the combinatorial nature of the problem and the numerous constraints present in the problem (such as weight restrictions and crew rest requirements). In this paper, we propose an approach for solving the airlift planning problem faced by USTRANSCOM based on modern, large-scale optimization. Our approach relies on solving a large-scale mixed-integer programming model that disentangles the assignment decision (which aircraft will pickup and deliver which requirement) from the sequencing decision (in what order the aircraft will pickup and deliver its assigned requirements), using a combination of heuristics and column generation. Through computational experiments with both a simulated data set and a planning data set provided by USTRANSCOM, we show that our approach leads to high-quality solutions for realistic instances (e.g., 100 aircraft and 100 requirements) within operationally feasible time frames. Compared with a baseline approach that emulates current practice at USTRANSCOM, our approach leads to reductions in total delay and aircraft time of 8%–12% in simulated data instances and 16%–40% in USTRANSCOM’s planning instances.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3