Empowering the Capillary of the Urban Daily Commute: Battery Deployment Analysis for the Locker-Based E-bike Battery Swapping

Author:

Xie Xiaolei1ORCID,Dai Xu12ORCID,Pei Zhi3ORCID

Affiliation:

1. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China;

2. Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695;

3. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

In densely populated Asian countries, e-bikes have become a new supernova in daily urban transportation. To facilitate the operations of e-bike-based mobility, the present paper studies the management of the battery deployment for the e-bike battery-swapping system, where the unique features of e-bike riding are considered. Given the pedal-assisted mode, e-bike users could abandon waiting and return to the station later on without too much range anxiety. However, because of the time-varying nature of the customer arrival and the complicated user behaviors, the battery quantity at each station is altered to guarantee the designated service level. However, little research has been done on the operations management of the e-bike battery-swapping system. To bridge the gap, we propose a nonstationary queueing network model to characterize the customer behaviors during the battery-swapping service. Then we develop a closed-form delayed infinite-server fluid approximation for the battery deployment of the one-time-loop scenario under various quality-of-service targets. In addition, we handle the infinite-time-loop scenario with the simulation-based iterative staffing algorithm. In the simulation study, we observe that the proposed battery deployment algorithms can help stabilize the system performance in terms of abandonment probability and expected delay in the face of time-varying demand and complex customer behaviors. Moreover, we reveal that the number of return loops correlates with the service level targets on the battery deployment decision. Furthermore, a time gap exists between the demand and the optimal battery deployment, making proactive battery management in the system possible. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72271222, 71871203, 71872093, 72271137, L1924063], and the National Social Science Fund of China [Grant 21&ZD128]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0132 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3