An Improved Integral Column Generation Algorithm Using Machine Learning for Aircrew Pairing

Author:

Tahir Adil1ORCID,Quesnel Frédéric1ORCID,Desaulniers Guy1ORCID,El Hallaoui Issmail1ORCID,Yaakoubi Yassine1ORCID

Affiliation:

1. Department of Mathematics and Industrial Engineering and Groupe d'études et de recherche en analyse des décisions (GERAD), Ecole Polytechnique de Montréal, Montréal, Quebec H3T 1J4, Canada

Abstract

The crew-pairing problem (CPP) is solved in the first step of the crew-scheduling process. It consists of creating a set of pairings (sequence of flights, connections, and rests forming one or multiple days of work for an anonymous crew member) that covers a given set of flights at minimum cost. Those pairings are assigned to crew members in a subsequent crew-rostering step. In this paper, we propose a new integral column-generation algorithm for the CPP, called improved integral column generation with prediction ([Formula: see text]), which leaps from one integer solution to another until a near-optimal solution is found. Our algorithm improves on previous integral column-generation algorithms by introducing a set of reduced subproblems. Those subproblems only contain flight connections that have a high probability of being selected in a near-optimal solution and are, therefore, solved faster. We predict flight-connection probabilities using a deep neural network trained in a supervised framework. We test [Formula: see text] on several real-life instances and show that it outperforms a state-of-the-art integral column-generation algorithm as well as a branch-and-price heuristic commonly used in commercial airline planning software, in terms of both solution costs and computing times. We highlight the contributions of the neural network to [Formula: see text].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3