Affiliation:
1. Department of Mathematics and Industrial Engineering and Groupe d'études et de recherche en analyse des décisions (GERAD), Ecole Polytechnique de Montréal, Montréal, Quebec H3T 1J4, Canada
Abstract
The crew-pairing problem (CPP) is solved in the first step of the crew-scheduling process. It consists of creating a set of pairings (sequence of flights, connections, and rests forming one or multiple days of work for an anonymous crew member) that covers a given set of flights at minimum cost. Those pairings are assigned to crew members in a subsequent crew-rostering step. In this paper, we propose a new integral column-generation algorithm for the CPP, called improved integral column generation with prediction ([Formula: see text]), which leaps from one integer solution to another until a near-optimal solution is found. Our algorithm improves on previous integral column-generation algorithms by introducing a set of reduced subproblems. Those subproblems only contain flight connections that have a high probability of being selected in a near-optimal solution and are, therefore, solved faster. We predict flight-connection probabilities using a deep neural network trained in a supervised framework. We test [Formula: see text] on several real-life instances and show that it outperforms a state-of-the-art integral column-generation algorithm as well as a branch-and-price heuristic commonly used in commercial airline planning software, in terms of both solution costs and computing times. We highlight the contributions of the neural network to [Formula: see text].
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Transportation,Civil and Structural Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献