Data-Driven Optimization for Air Traffic Flow Management with Trajectory Preferences

Author:

De Giovanni Luigi1ORCID,Lancia Carlo2ORCID,Lulli Guglielmo23ORCID

Affiliation:

1. Diparitmento di Matematica “Tullio Levi-Civita,” Università di Padova, 35122 Padua, Italy;

2. Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano-Bicocca, 20126 Milano, Italy;

3. Management Science, Lancaster University, Lancaster LA1 4YX, United Kingdom

Abstract

In this paper, we present a novel data-driven optimization approach for trajectory-based air traffic flow management (ATFM). A key aspect of the proposed approach is the inclusion of airspace users’ trajectory preferences, which are computed from traffic data by combining clustering and classification techniques. Machine learning is also used to extract consistent trajectory options, whereas optimization is applied to resolve demand-capacity imbalances by means of a mathematical programming model that judiciously assigns a feasible four-dimensional trajectory and a possible ground delay to each flight. The methodology has been tested on instances extracted from the Eurocontrol data repository. With more than 32,000 flights considered, we solve the largest instances of the ATFM problem available in the literature in short computational times that are reasonable from the practical point of view. As a by-product, we highlight the trade-off between preferences and delays as well as the potential benefits. Indeed, computing efficient solutions to the problem facilitates a consensus between the network manager and airspace users. In view of the level of accuracy of the solutions and the excellent computational performance, we are optimistic that the proposed approach can make a significant contribution to the development of the next generation of air traffic flow management tools.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text-Enriched Air Traffic Flow Modeling and Prediction Using Transformers;IEEE Transactions on Intelligent Transportation Systems;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3