A Chance-Constrained Two-Echelon Vehicle Routing Problem with Stochastic Demands

Author:

Sluijk Natasja1ORCID,Florio Alexandre M.1ORCID,Kinable Joris12ORCID,Dellaert Nico1ORCID,Van Woensel Tom1ORCID

Affiliation:

1. School of Industrial Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands;

2. Supply Chain Optimization Technologies, Amazon, Seattle, Washington 98109

Abstract

Two-echelon distribution systems are often considered in city logistics to maintain economies of scale and satisfy the emission zone requirements in the cities. In this work, we formulate the two-echelon vehicle routing problem with stochastic demands as a chance-constrained stochastic optimization problem, where the total demand of the customers in each second-echelon route should fit within the second-echelon vehicle capacity with a high probability. We propose two efficient solution procedures based on column generation. Key to the efficiency of these procedures is the underlying labeling algorithm to generate new columns. We propose a novel labeling algorithm based on simultaneous construction of second-echelon routes and a labeling algorithm that builds second-echelon routes sequentially. To further enhance the performance of the solution procedure, we use statistical inference tests to ensure that the chance constraints are met. We reduce the number of customer combinations for which the chance constraint needs to be verified by imposing feasibility bounds on the stochastic customer demands. With these bounds, the runtimes of the labeling algorithms are reduced significantly. The novel labeling algorithm, statistical inference, and feasibility bounds can also be applied to dependent, correlated, and data-driven (scenario-based) demand distributions. Finally, we show the value of the stochastic formulation in terms of improved solution cost and guaranteed feasibility of second-echelon routes. Funding: This work was funded by the Dutch Research Council (NWO) DAREFUL project [Grant 629.002.211] and was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.1162 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3