Modeling and Solving the Traveling Salesman Problem with Speed Optimization for a Plug-In Hybrid Electric Vehicle

Author:

Wu Fuliang1ORCID,Adulyasak Yossiri1ORCID,Cordeau Jean-François1ORCID

Affiliation:

1. HEC Montréal, Montréal, Québec H3T 2A7, Canada

Abstract

This paper investigates a variant of the traveling salesman problem (TSP) with speed optimization for a plug-in hybrid electric vehicle (PHEV), simultaneously optimizing the average speed and operation mode for each road segment in the route. Two mixed-integer nonlinear programming models are proposed for the problem: one with continuous speed decision variables and one with discretized variables. Because the models are nonlinear, we propose reformulation schemes and introduce valid inequalities to strengthen them. We also describe a branch-and-cut algorithm to solve these reformulations. Extensive numerical experiments are performed to demonstrate the algorithm’s performance in terms of computing time and energy consumption costs. Specifically, the proposed solution method can efficiently solve instances with a realistic number of customers and outperforms the benchmark approaches from the literature. Integrating speed optimization into the TSP of a PHEV can lead to significant energy savings compared with the fixed-speed TSP. In addition, the proposed model is extended to investigate the impact of the presence of charging stations, which makes the problem harder to solve but has the potential to further reduce energy consumption costs. Funding: F. Wu gratefully acknowledges the support of the National Natural Science Foundation of China [Grant 72271161]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0247 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3