Hyperbush Algorithm for Strategy-Based Equilibrium Traffic Assignment Problems

Author:

Xu Zhandong12ORCID,Xie Jun12ORCID,Liu Xiaobo12ORCID,Nie Yu (Marco)3ORCID

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan 610031 China

2. National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

3. Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208

Abstract

Strategy-based equilibrium traffic assignment (SETA) problems define travel choice broadly as a strategy rather than a simple path. Travelers navigating through a network based on a strategy end up following a hyperpath. SETA is well suited to represent a rich set of travel choices that take place en route at nodes, such as transit passengers’ transfer decisions, truckers’ bidding decisions, and taxi drivers’ reposition decisions. This paper recognizes and highlights the commonalities among classical and emerging SETA problems and proposes to unify them within the same modeling framework, built on the concept of a hypergraph. A generic hyperbush algorithm (HBA) is developed by decomposing a hypergraph into destination-based hyperbushes. By constructing hyperbushes and limiting traffic assignments to them, HBA promises to obtain more precise solutions to larger instances of SETA problems at a lower computational cost, both in terms of CPU time and memory consumption. To demonstrate its generality and efficiency, we tailor HBA to solve two SETA problems. The results confirm that HBA consistently outperforms the benchmark algorithms in the literature, including two state-of-the-art hyperpath-based algorithms. To obtain high-quality equilibrium solutions for SETA instances of practical size, HBA runs up to five times faster than the best competitor with a fraction of its memory consumption.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3