Compact Formulations for Split Delivery Routing Problems

Author:

Munari Pedro1ORCID,Savelsbergh Martin2ORCID

Affiliation:

1. Production Engineering Department, Federal University of Sao Carlos, Sao Carlos, SP 13561-353, Brazil;

2. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Split delivery routing problems are concerned with serving the demand of a set of customers with a fleet of capacitated vehicles at minimum cost, where a customer can be served by more than one vehicle if beneficial. They generalize traditional variants of routing problems and have applications in commercial and humanitarian logistics. Previously, formulations involving only commonly used arc-based variables have provided only relaxations for split delivery variants, as the possibility of visiting customers more than once introduces modeling challenges. The only known compact formulations are based on variables indexed by vehicle or by visit number and perform poorly when using general-purpose integer programming software. We present compact formulations that avoid the use of these types of variables and that can model split delivery routing problems with and without time windows. Computational experiments demonstrate their superior performance over existing compact formulations. We also develop a branch-and-cut algorithm that balances the efficiency derived from a relaxed formulation with the strength derived from one of the proposed formulations and demonstrate its efficacy on a large set of benchmark instances. The algorithm solves 95 instances to proven optimality for the first time and improves the best known lower and/or upper bound for many other instances.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3