Two-Level Capacitated Discrete Location with Concave Costs

Author:

Malik Aditya1ORCID,Contreras Ivan1ORCID,Vidyarthi Navneet1

Affiliation:

1. Concordia University and Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, Montreal, Quebec H3G 1M8, Canada

Abstract

In this paper, we study a general class of two-level capacitated discrete location problems with concave costs. The concavity arises from the economies of scale in production, inventory, or handling at the facilities and from the consolidation of flows for transportation and transshipment on the links connecting the facilities. Given the discrete nature of the problem, it is naturally formulated as a mixed-integer nonlinear program that uses binary variables for locational decisions and continuous variables for routing flows. We present an alternative formulation that only uses continuous variables and discontinuous functions, resulting in a nonlinear program with a concave objective function. Our main goal is to computationally compare these two modeling approaches under the same solution framework. In particular, we present an exact branch-and-bound algorithm that uses (integer) linear relaxations of the proposed formulations to optimally solve large-scale instances. The algorithm is enhanced with a cost-dependent spatial branching strategy and preprocessing step to improve its convergence. Extensive computational experiments are performed to assess the performance of the exact algorithm. Based on real location data from 3,109 counties in the contiguous United States, we also present a sensitivity analysis to showcase the impact of considering concave costs in location and assignment decisions.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3